Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: covidwho-20242259

RESUMEN

Viruses infect millions of people worldwide each year, and some can lead to cancer or increase the risk of cancer. As viruses have highly mutable genomes, new viruses may emerge in the future, such as COVID-19 and influenza. Traditional virology relies on predefined rules to identify viruses, but new viruses may be completely or partially divergent from the reference genome, rendering statistical methods and similarity calculations insufficient for all genome sequences. Identifying DNA/RNA-based viral sequences is a crucial step in differentiating different types of lethal pathogens, including their variants and strains. While various tools in bioinformatics can align them, expert biologists are required to interpret the results. Computational virology is a scientific field that studies viruses, their origins, and drug discovery, where machine learning plays a crucial role in extracting domain- and task-specific features to tackle this challenge. This paper proposes a genome analysis system that uses advanced deep learning to identify dozens of viruses. The system uses nucleotide sequences from the NCBI GenBank database and a BERT tokenizer to extract features from the sequences by breaking them down into tokens. We also generated synthetic data for viruses with small sample sizes. The proposed system has two components: a scratch BERT architecture specifically designed for DNA analysis, which is used to learn the next codons unsupervised, and a classifier that identifies important features and understands the relationship between genotype and phenotype. Our system achieved an accuracy of 97.69% in identifying viral sequences.

2.
Comput Intell Neurosci ; 2022: 1672677, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1986430

RESUMEN

Hypertension is the main cause of blood pressure (BP), which further causes various cardiovascular diseases (CVDs). The recent COVID-19 pandemic raised the burden on the healthcare system and also limits the resources to these patients only. The treatment of chronic patients, especially those who suffer from CVD, has fallen behind, resulting in increased deaths from CVD around the world. Regular monitoring of BP is crucial to prevent CVDs as it can be controlled and diagnosed through constant monitoring. To find an effective and convenient procedure for the early diagnosis of CVDs, photoplethysmography (PPG) is recognized as a low-cost technology. Through PPG technology, various cardiovascular parameters, including blood pressure, heart rate, blood oxygen saturation, etc., are detected. Merging the healthcare domain with information technology (IT) is a demanding area to reduce the rehospitalization of CVD patients. In the proposed model, PPG signals from the Internet of things (IoT)-enabled wearable patient monitoring (WPM) devices are used to monitor the heart rate (HR), etc., of the patients remotely. This article investigates various machine learning techniques such as decision tree (DT), naïve Bayes (NB), and support vector machine (SVM) and the deep learning model one-dimensional convolutional neural network-long short-term memory (1D CNN-LSTM) to develop a system that assists physicians during continuous monitoring, which achieved an accuracy of 99.5% using PPG-BP data set. The proposed system provides cost-effective, efficient, and fully connected monitoring systems for cardiac patients.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Teorema de Bayes , COVID-19/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Nube Computacional , Humanos , Aprendizaje Automático , Pandemias , Fotopletismografía/métodos
3.
Discrete Dynamics in Nature & Society ; : 1-7, 2022.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1874893

RESUMEN

Background. Cloud-based environment for machine learning plays a vital role in medical imaging analysis and predominantly for the people residing in rural areas where health facilities are insufficient. Diagnosis of COVID-19 based on machine learning with cloud computing act to assist radiologists and support telehealth services for remote diagnostics during this pandemic. Methods. In the proposed computer-aided diagnosis (CAD) system, the balance contrast enhancement technique (BCET) is utilized to enhance the chest X-ray images. Textural and shape-based features are extracted from the preprocessed X-ray images, and the fusion of these features generates the final feature vector. The gain ratio is applied for feature selection to remove insignificant features. An extreme learning machine (ELM) is a neural network modification with a high capability for pattern recognition and classification problems for COVID-19 detection. Results. However, to further improve the accuracy of ELM, we proposed bootstrap aggregated extreme learning machine (BA-ELM). The proposed cloud-based model is evaluated on a benchmark dataset COVID-Xray-5k dataset. We choose 504 (after data augmentation) and 100 images of COVID-19 for training and testing, respectively. Conclusion. Finally, 2000 and 1000 images are selected from the non-COVID-19 category for training and testing. The model achieved an average accuracy of 95.7%. [ FROM AUTHOR] Copyright of Discrete Dynamics in Nature & Society is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
IT Prof ; 23(4): 57-62, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1378018

RESUMEN

The novel coronavirus named COVID-19 has quickly spread among humans worldwide, and the situation remains hazardous to the health system. The existence of this virus in the human body is identified through sputum or blood samples. Furthermore, computed tomography (CT) or X-ray has become a significant tool for quick diagnoses. Thus, it is essential to develop an online and real-time computer-aided diagnosis (CAD) approach to support physicians and avoid further spreading of the disease. In this research, a convolutional neural network (CNN) -based Residual neural network (ResNet50) has been employed to detect COVID-19 through chest X-ray images and achieved 98% accuracy. The proposed CAD system will receive the X-ray images from the remote hospitals/healthcare centers and perform diagnostic processes. Furthermore, the proposed CAD system uses advanced load balancer and resilience features to achieve fault tolerance with zero delays and perceives more infected cases during this pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA